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SINGLE-PARTICLE SCATTERING 
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ANDREAS SCHINNER 

Institut f ur Experimentalphysik, Abteilung fur Atom- und Kernphysik, Johannes 
Kepler Universitat, Altenbergerstraje 69, A-4040 Linz, Austria 

[Received 15 March 1993) 

The static pair correlation function of the three-dimensional homogeneous electron gas at given ternpera- 
ture and density is estimated by the scattering of non-interacting particles in an effective potential. The 
full numerical treatment of the self-consistency problem yields results that are in excellent agreement with 
those obtained within a generalized Thomas-Fermi approximation. 

KEY WORDS: Jellium, nonzero temperature, pair function, effective interaction. 

1 INTRODUCTION 

In a previous paper’ the basic principles of a Single-Particle Scattering Approximation 
(to be referred to as SPSA) for the pair function of an electron liquid have been 
formulated: One electron at the (arbitrarily chosen) origin of the many-electron 
system is the source of an effective single-particle interaction, in which the non- 
interacting collective is “moving”. Consequently, the singled-out electron is treated 
as an impurity in the free Fermion system that is inducing a radial charge distribution 
around it. Using Poisson’s equation the effective potential can be determined 
self-consistently together with the charge distribution. 
In Ref. [l] the full self-consistency problem has been simplified by an additional 
approximation step, a generalized Thomas-Fermi approximation. Using this model 
the ground-state pair correlation function of interacting jellium at metallic densities 
could be calculated in excellent agreement with Monte-Carlo simulations. Further- 
more, the interesting non-monotonical temperature dependence of the pair function 
at zero particle separation, which has been found by Schweng et al.’, could also be 
investigated within this theory. Consequently, the main objective of the present work 
is to prove the validity of the generalized Thomas-Fermi approximation by numeric- 
ally solving the full self-consistency problem. 

This paper is organized as follows: In Section 2 the basic SPSA-equations are 
reformulated for full numerical treatment. Section 3 gives a brief description of the 
special methods necessary to obtain stable self-consistent solutions. The results 
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obtained there are in excellent agreement with the generalized Thomas-Fermi 
approximation. Finally, a brief discussion in Section 4 ends this paper. 

2 DESCRIPTION OF THE MODEL 

Following Section 2 of Ref. [l] we can write down the basic equations for a 
simple SPSA: 

W 

n(xl V )  = c (21 + l)n,(xI U )  
1=0 

(4) 

We are using the dimensionless units and symbols of Ref. [l] here too; in particular 
x = k,r, where k ,  denotes the Fermi momentum. Eqs. (1H4) are the exact expressions 
for the local density of a pair-interaction free electron gas in the presence of a 
single-particle potentional iV(x) ,  expanded in terms of the radial density components. 
nE(8, p) denotes the free Fermi distribution at reduced temperature 8 and chemical 
potential p. Furthermore, the ansatz Eq. (5) provides a connection between the density 
of the inhomogeneous system and the approximated pair function of the homogen- 
eous electron gas. It is this equation that characterizes the concrete realization 
of a SPSA. The replacement of Eq. (5) by a more sophisticated ansatz is possible, 
but beyond the scope of the present work. All together Eqs. (1H5) define the 
pair correlation function as a complex functional of the effective interaction 

To close the theory we interpret V ( x )  as the electrostatic potential around a 
singled-out electron that is given by Poisson's equation (Eq. (1) of Ref. [l]). We 
can write down its most general solution as (for x I A) 

W). 
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where the screening factor f ( x )  is defined as U(x) divided by the bare Coulomb 
potential: 

2ar, 
U(X) = ~ f ( x )  

X 
(7) 

[r ,  denotes the usual density parameter, and a = (4/97~)”~]. 
The cutoff-parameter A has been introduced for numerical reasons. Its physical 

interpretation is that of a ‘system radius”, outside whose sphere f ( x )  is set to zero. 
A more sophiscated way to handle the asymptotic large - x  range is to use Eq. (6) 
for x I A and the Thomas-Fermi approximation Eq. (21) of Ref. [l] for x > A. 
The numerical analysis, however, shows that this does not lead to any relevant 
improvement as long as A is chosen sufficiently large (A 2 30 for 0 5 5). Con- 
sequently, we write down the boundary conditions 

f(0) = 1 and f(A) = 0 (8) 

and obtain from Eq. (6)  the corresponding values for c1 and c 2 :  

3 NUMERICAL APPROACH 

The combination of Eqs. (6) and (9) defines the screening factor f ( x )  as a functional 
of the pair function g(x). Since the numerical methods necessary to successfully 
evaluate the functional g(xl U )  [Eqs. (1H5)l have been discussed already in Section 
4 of Ref. [l], we can concentrate here on the problem of how to determine g(xl U )  
self-consistently with f ( x [  9). 

The solution of two coupled, nonlinear functional equations is indeed one of the 
most challenging problems in numerical analysis. It is well-known from, e.g., calcula- 
tions within the Kohn-Sham density functional formalism3 that the straight iteration 
method fails in most practical situations. This is caused by the occurrence of 
instabilities during the iteration cycle that are driving the algorithm into divergence. 
This is also true for the present case. 

Among the various methods to damp oscillations during the iterative process 
Anderson’s mixing495 provides a good tradeoff between convergence enhancement 
and calculational effort. Following the work by Johnson6 we characterize the rn-th 
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iteration step by inserting an “input” density distribution nlm) into Eq. (S), combining 
it with Eq. (6), and then calculating an “output” density nb”) from the resulting 
potential, using Eqs. (1H4). The “input” density for the next step is then calculated as 

where 

Therein the parameter ~E[O, 11 is chosen empirically, but an optimal value for p 
can be obtained for each iteration step from a simple functional of the numerical 
“distances” between the “input” and “output” densities (confer Eq. (4) of Ref. 161). 
It is also noteworthy that for a fixed D = 0 this algorithm reduces to  the well-known 
so called “simple mixing” method. 

Adopting Anderson’s mixing algorithm for the present problem yields rapid and 
stable convergence for all interesting values of the parameters r, and 8. On the 
average about 10 iterations are necessary to obtain sufficiently accurate results at  
metallic densities (using y = 0.1). In the contrary, the “simple mixing” methods needs 
typically over 100 iterations and is rather unstable, i.e. small changes in the 
parameters can cause it to fail at all. 

In Figure 1 the resulting pair correlation function for rs = 3 is compared with 
the generalized Thomas-Fermi approximation from Ref. [l]. It is seen that the 
largest differences appear in the ground-state, while at 8 = 3 the two curves are 

r I 

0.00 i I I I I 
0 1 2 3 4 

Figure 1 The pair correlation function g(r)  versus k,r for r, = 3 and two reduced temperatures 8. The 
results of the full self-consistency problem (full lines) are compared with those of the generalized 
Thomas-Fermi approximation’ (dashed lines). The squares are the result of a ground-state Monte-Carlo 
simulation; the .data have been taken from Figure 3 of Ref. [9]. 
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almost identical within the thickness of the lines. The corresponding screening 
factors f ( x )  are compared in Figure 2. The deviations of the full numerical analysis 
from the approximated one are more significant in this case, but still do not 
provide a basis for serious criticism. Finally, a plot of g(0) versus rs for various 
approaches is seen in Figure 3. 

h 

L 
W 
Y- 

I I I I 

0 1 2 3 4 

Figure 2 The screening factor f ( r )  [confer Section 21 versus k,r for r, = 3 and two reduced temperatures 
0. The results of the full self-consistency problem (full lines) are compared with those of the generalized 
Thomas-Fermi approximation' (dashed lines). 

0 2 4 6 8 10 

TS 

Figure 3 The pair correlation function g(r = 0) at zero temperature versus rs .  The present full numerical 
solution (squares) is compared with the generalized Thomas-Fermi approximation' (dashed line), the 
estimation Eq. (13) (dash-double-dotted line), and the result of Yasuhara's theory' (dash-dotted line). 
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4 CONCLUSIONS 

It was the main objective of the present paper to numerically prove the quantitive 
validity of the generalized Thomas-Fermi approximation, which has been used in 
Ref. [l] to simplify the self-consistency problem within the Single-Particle Scattering 
Approximation presented there. Taking into account that the effective potential more 
or less is only an auxiliary quantity, and consequently concentrating on the pair 
correlation function, the conformity indeed is excellent. 

With this important result the intentions of Ref. [l] and the present work have 
been, on principle, fulfilled. Nevertheless, there are many questions remaining, and 
the perhaps most intriguing one among them simply is: How does it actually 
work, which means, how can such a complex many-particle quantity like the pair 
correlation function be modeled in such a realistic way by a relatively simple 
concept like the SPSA? From my point of view the answer most probably is that 
many aspects of the static correlations, even in a quantum liquid, are more simple 
than -one would expect at first glance. A short calculation may confirm this 
standpoint: 

The basic principle of a SPSA is to represent the pair correlation function by a 
tunneling probability. Consequently, one can tentatively simplify the scenario to an 
absolute minimum by just calculating the transmission coefficient of an electron 
through the (bare) Coulomb barrier of another one. Within WKB-approximation 
the result is simply given by 

[TI2 ‘v exp [ -2 lox‘ dx P ( x ) ]  

with 

U ( x )  is the potential barrier, E the energy of the scattered electron (both in units of 
the Fermi energy), and x, denotes the classical turning point P(x,) = 0. Now, 
setting E equal to the mean kinetic energy per particle of the free system ( E  = f E , ) ,  
substituting f of a bare Coulomb potential for U(x) ,  and modeling g ( 0 )  as f of the 
transmission probability (to include Pauli’s principle), one finally arrives at 

g ( 0 )  = f exp ( -  rr&clr,) = f - 1.057 + rs + F(r:). (13) 

The plot of Eq. (13) is shown in Figure 3 together with the present SPSA-result 
and g(0) obtained by Yasuhara’s theory’. It is seen that Eq. (13) significantly 
overestimates the short-range correlations, which is, e.g., expressed by the fact that 
the absolute value of the linear expansion coefficient in Eq. (13) is by a factor of 3 
too high, when compared with the exact result obtained by Kimbal18. Nevertheless, 
even this extremely reduced form of a SPSA yields a more appropriate description 
of g(0) than, e.g., the Random Phase Approximation, when going to metallic densities. 
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Of course, introducing screening effects into U(x)  of Eq. (13) would again improve 
the model towards the direction of the more sophisticated SPSA discussed in the 
preceding sections. However, the reader should also be aware of the fact that the 
WKB-approximation in Eq. (13) is used beyond its range of validity, which is given 
by the condition 

The inequality Eq. (14) is not fulfilled when x tends to zero. 
Nevertheless, the only purpose for presenting the crude approximation Eq. (13) 

was to confirm the conclusion that the static correlations described by the pair 
function are dominated by single-particle processes. This is perhaps the most 
important result that has been obtained within the present concept. However, it is 
quite probable that there are more subtle properties of the static correlations that 
cannot be modeled satisfactorily within a SPSA. It will be left to future investigations 
to assess what those properties might be. 
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